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HYDROGEN – THE FUEL OF THE FUTURE

With the concerns of the global climate warming it is 
absolutely indispensable for the mankind to develop new 
clean energy sources other than fossil fuels. 
The consensus of opinion is setting on hydrogen for either 
supplying fuel cells or internal combustion engines as the 
way forward. According to many in the scientific 
community we are now at the verge of a new hydrogen 
age. Extensive research efforts are lying down the 
foundation of the next industrial revolution in the 
application of hydrogen as the fuel of the future. 



HYDROGEN STORAGE FOR PROTON 
MEMBRANE EXCHANGE (PEM) FUEL CELLS 
FOR VEHICULAR (MOBILE) APPLICATIONS

Excerpts from Ritter et al, Materials Today, September 2003, pp.18-
23

“In recent years, months, weeks, and even days, it has become increasingly 
clear that hydrogen as an energy carrier is “in “ and carbonaceous fuels are 
“out”. The hydrogen economy is coming  with the impetus to transform our 
fossil energy-based society, which inevitably will cease to exist, into a 
renewable energy-based one. 

However, hydrogen storage is proving to be one of the most important 
issues and potentially biggest roadblock for the implementation of a 
hydrogen economy. Of the three options that exist for storing hydrogen, in 
a solid, liquid and gaseous state, the former is becoming accepted as the 
only method potentially able to meet the gravimetric and volumetric 
densities of the recently announced FreedomCar goals; and of all known 
hydrogen storage materials, complex hydrides may be the only hope”.



HYDROGEN STORAGE FOR  PEM FUEL 
CELL-POWERED VEHICLES

None~80-150 Solid metal/intermetallic 
hydrides

Large thermal losses 
(open system!)

~71 Liquid hydrogen at 
cryogenic tank at -2520C 
(21K):

Safety problems 
(enormous pressures 
required)

~40 Compressed hydrogen 
gas under 80 MPa 
pressure

DrawbacksVolumetric density 
(kgH2 m-3)

Storage system

The highest volumetric density required



HIGH VOLUMETRIC HYDROGEN DENSITY 
FOR VEHICLES

~4 kg of hydrogen           range ~480 km (300 miles)

Volume of 4 kg of hydrogen compacted in different ways, with 
size relative to the size of a car

Toyota press, 33rd Tokyo Motor Show, 1999; L.Schlapbach and A. 
Zűttel, Nature,414, 353-358 (2001)



HYDROGEN FOR PEM FUEL CELLS-
Gravimetric density

The highest gravimetric density: light metal-based hydrides

350 (?)2.704.5Mg2CoH5Mg-Co-H

2802.305.2Mg3MnH7Mg-Mn-H

3202.725.4Mg2FeH6Mg-Fe-H

4001.0710.6NaBH4Na-B-H

300-800 (?)0.9915.3Mg(BH4)2 or 
MgB2H8

Mg-B-H

3800.6718.4LiBH4Li-B-H

Decomposition 
temperature (0C)

Density of 
hydride
(g/cm3)

Theoretical 
hydrogen 

capacity (wt%)

HydrideMetal-
hydrogen 

system



HYDROGEN FOR PEM FUEL CELLS-
Requirements for metal/intermetallic hydrides

• World Energy Network (Japan): 

Hydrogen capacity > 3wt%; desorption temp. ~1000C;
5000 cycles life

• Department of Energy (USA): 

Hydrogen capacity > 6wt%

• International Energy Agency: 

Hydrogen capacity > 5wt%; desorption temp. < 1500C;  
1000 cycles life



HYDROGEN FOR PEM FUEL CELLS-
Metal/intermetallic hydrides-Conclusions

• All light metal-based hydrides have excellent 
hydrogen storage capacities sometimes exceeding those 
required  by various agencies for vehicular applications
• All of them have a fatal drawback: too high 
desorption temperature!

• Their desorption kinetics are slow for polycrystalline 
alloys

HOW CAN WE IMPROVE KINETICS AND 
DESORPTION TEMPERATURE ?!



BEHAVIOR OF 
NANOSTRUCTURED/NANOCOMPOSITE 

HYDRIDES
Zaluska et al., Appl. Phys. A 72 (2001) 157-165 (review paper)

Absorption kinetics

poly

nano

Desorption temperature 

DSC



METHODS OF SYNTHESIS OF 
NANOSTRUCTURED/NANOCOMPOSITE 

HYDRIDES
Definition: Nanostructured/nanocomposite means that each 
phase present in the individual powder particle is in the form 
of grains with nanometer size; one particle is one nano-
polycrystal

1.Two-step: mechanical alloying (MA) of elemental metal 
powders or milling (MM) of bulk alloys under protective gas 
(Ar, He) ; subsequent hydrogenation in a separate step under 
appropriate pressure of H2

2.One-step: mechanical alloying/milling of elemental metal 
powders/bulk alloys directly under hydrogen – Reactive 
Mechanical Alloying/Milling (RMA/RMM) – cost reduction 
and ease of hydride formation - preferable



METHODS OF SYNTHESIS OF 
NANOSTRUCTURED/NANOCOMPOSITE 

HYDRIDES-cont
Common milling techniques

Drawback: completely uncontrolled (chaotic) 
movement of grinding balls



CONTROLLED REACTIVE MECHANICAL 
ALLOYING/MILLING (CRMA/MM) 

Magneto-mill Uni-Ball-
Mill 5 for controlled 
milling - trajectories of 
milling balls are 
controlled by strong 
NdFeB magnets
Courtesy of A.O.C. Scientific 
Engineering, Australiaa=WD=working distance



Mg-M-H SYSTEMS SELECTED FOR 
SYNTHESIS BY CRMA

Mg(BH4)2 or MgB2H8
Mg-2B (crystalline)(c)-H 

Mg-2B (amorphous)(a)-H
2Mg-Co-H                            Mg2CoH5 

3Mg-Mn-H                           Mg3MnH7

2Mg-Fe-H                             Mg2FeH6

Complex metal hydrides: mixed ionic-covalent bonding 
between metal and hydrogen complex, e.g. (FeH6)4-



EXPERIMENTAL OUTLINE-Milling

1.Elemental powders of Mg, B (cryst&amorph.), Co, Mn and 
Fe.

3. Handling  of powders in the glove bag filled with helium for 
environmental protection.

4. Milling in the magneto-mill Uni-Ball-Mill 5; ball-to-powder 
weight ratio (BPWR) was 10:1 for the 2Mg-Co and 3Mg-Mn
mixtures and ~40:1 for the other mixtures. 

3.Hydrogen pressure in the milling vial 400-500 kPa

5. Working distance WD= 10 to 3 mm depending on the specific 
alloy; it governs the force of the magnetic attraction exerted 
onto the steel balls.



EXPERIMENTAL OUTLINE-
Microstructural and thermal studies

• High-resolution field emission SEM (FE SEM) LEO 
1530 with integrated EDAX Pegasus 1200  

•X-ray diffraction (XRD) using Philips PW 1730 and 
Siemens D500 diffractometers; CuKα radiation 
(λ=0.15418 nm) 

• Differential scanning calorimetry (DSC) (Netzsch 404); 
heating rate 4 K/min; argon flow rate 16ml/min

• Thermogravimetric analysis (TGA)(TA Instruments); 
heating rate 10 K/min; helium flow



EXPERIMENTAL OUTLINE-
Nanograin size calculations
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From XRD peak broadening using linear regression 
procedure (Klug&Alexander, X-ray Diffraction Procedures 
for Polycrystalline and Amorphous Materials, John Wiley & 
Sons, New York (1974).

L-nanograin (crystallite) size; e-lattice strain; λ-the wave 
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corrected “pure” XRD peak profile breadth; B and b-FWHM 
(full width at half maximum) of analyzed and reference peak, 
respectively



RESULTS-Microstructure of powders

b) a) 

Co Mg 

Backscattered electron (BSE) images of the morphology of 
powders processed under shearing mode by CRMA under 
hydrogen. a) 2Mg-Co mixture milled for 30h using WD=10 
mm and BPWR=10:1 and b) Mg-2B (crystalline (c) boron) 
mixture milled for 5h using WD=5 mm and BPWR=44:1. 
RPM=60 applied during milling.



RESULTS – XRD patterns vs. milling time
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RESULTS- XRD intensities vs. milling time
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RESULTS-XRD intensities vs. milling time (cont.)
• Mg-2B(a)-complete 
consumption of Mg to 
form β-MgH2 (at 50h)
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consumption of Mg to 
form β-MgH2

• Partial amorphization (?) of β-MgH2
after 50 and 20h of CRMA, respectively
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RESULTS-Nanostructured β-MgH2 hydride

Principal 
hydride in 
2Mg-Co,
3Mg-Mn and 
Mg-2B is 
nano-β-MgH2
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RESULTS-Nanostructured Mg
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RESULTS-Nanostructured Mg(BH4)2 in Mg-2B(c)
system

shows the exact 
peak position for 
Mg(BH4)2
according to 
JCPDS Powder 
Diffraction File 
No.26-1212 

[similar peaks but 
weaker also in 
XRD from Mg-
2B(a)]
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RESULTS - Nanostructured Mg(BH4)2 –XRD 
after thermal analysis

Thermally 
stable 
hydride?
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RESULTS - Amorphization in the 2Mg-Fe-H
system - XRD pattern
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RESULTS - Amorphization in the 2Mg-Fe-H 
system - XRD intensities
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RESULTS - Amorphization in the 2Mg-Fe-H 
system – Qualitative EDS

2Mg-Fe 20h

a)

2Mg-Fe 40h

b)

Mg peak clearly 
seen in EDS profile 
but absent in XRD:

Mg exists in the
amorphous state



RESULTS - Amorphization in the 2Mg-Fe-H 
system - Nanograin size/nanocomposite
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RESULTS - Amorphous hydrides in the 2Mg-Fe-H
system – Thermal behavior-TGA
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RESULTS - Amorphous hydrides in the 2Mg-Fe-H
system – Thermal behavior-DSC

2Mg-Fe   59h

endothermic

Peak temperature range: 320.7 -329.20C – agrees well 
with TGA



RESULTS - Amorphous hydride in the 2Mg-Fe-H
system – stoichiometric formula

Based on the results of desorbed hydrogen observed in 
TGA runs which was in the range 2.21-4.16wt% the 
stoichiometric formula of the amorphous hydride can be 
estimated as MgH0.6-1.1. The hydrogen-to-metal ratio in this 
formula is nearly 1 which implies that the amorphous 
hydride has a metallic character. This is in excellent 
agreement with Orimo et al [Acta mater. 45 (1997) 2271-
2278] who reported that amorphous hydrides in various 
systems have the hydrogen-to-metal ratio ~1 and metallic 
character.



SUMMARY/CONCLUSIONS

1. A principal nanostructured hydride formed in
2Mg-Co, 3Mg-Mn and Mg-2B mixtures is β-MgH2; 
no Mg2CoH5 and Mg3MnH7 complex hydrides have 
been formed during CRMA under shearing mode 
despite a profound nanostructurization of 
elemental species in the mixture (Question: why no 
formation of complex hydrides has occurred?)

2. XRD peaks close to the peaks from Mg(BH4)2 are 
observed on the scans from the Mg-2B(crystalline)
mixture and on the scans (but weaker) from the 
Mg-2B(amorphous) mixture



SUMMARY/CONCLUSIONS (cont.)

3. In the 2Mg-Fe mixture there is initially a gradual 
nanostructurization of the Mg and β-MgH2 phases  
followed by amorphization of both phases with 
increasing milling time. Eventually the amorphous 
hydride, possibly with the stoichiometric formula 
MgH0.6-1.1, is being formed; no formation of 
complex hydride Mg2FeH6 is observed

(Question: why no formation of Mg2FeH6 has 
occurred (successfully synthesized by some other 
researchers) and instead an amorphous hydride has 
been formed ?
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